Skip to main content

Economic Analysis Use Case

Leverage FRED MCP Server for comprehensive economic analysis, from macroeconomic forecasting to sectoral performance evaluation.

Overview

Economic analysts use FRED data to:
  • Monitor current economic conditions
  • Analyze historical trends
  • Identify relationships between indicators
  • Support forecasting and projections
  • Evaluate policy impacts

Macroeconomic Analysis

Business Cycle Analysis

Track key indicators across the cycle:
1

Leading Indicators

// Building permits
{ "series_id": "PERMIT" }

// Initial jobless claims
{ "series_id": "ICSA" }

// Yield curve spread
{ "series_id": "T10Y2Y" }

// Consumer expectations
{ "series_id": "UMCSENT" }
2

Coincident Indicators

// GDP
{ "series_id": "GDP" }

// Employment
{ "series_id": "PAYEMS" }

// Industrial production
{ "series_id": "INDPRO" }

// Retail sales
{ "series_id": "RSXFS" }
3

Lagging Indicators

// Unemployment
{ "series_id": "UNRATE" }

// Unit labor costs
{ "series_id": "ULCNFB" }

// Consumer credit
{ "series_id": "TOTALSL" }

GDP Decomposition

Analyze sources of growth:
// Total GDP
const gdp = {
  "series_id": "GDP",
  "observation_start": "2020-Q1",
  "units": "pca"
};

// Components
const components = {
  consumption: "PCEC",      // Personal consumption (68%)
  investment: "GPDI",       // Gross private investment (17%)
  government: "GCE",        // Government spending (17%)
  net_exports: "NETEXP"     // Exports - Imports
};
GDP = C + I + G + (X - M)Track component contributions to identify growth drivers

Inflation Analysis

Multiple Measures

Compare different inflation indicators:
// Headline CPI
{
  "series_id": "CPIAUCSL",
  "units": "pc1"
}

// Core CPI (ex food & energy)
{
  "series_id": "CPILFESL",
  "units": "pc1"
}

// Services CPI
{
  "series_id": "CUSR0000SAS",
  "units": "pc1"
}

// Goods CPI
{
  "series_id": "CUUR0000SAC",
  "units": "pc1"
}

Inflation Expectations

Monitor forward-looking indicators:
// University of Michigan 1-year ahead
{
  "series_id": "MICH",
  "observation_start": "2020-01-01"
}

// 5-year breakeven rate
{
  "series_id": "T5YIE",
  "observation_start": "2020-01-01"
}

// 10-year breakeven rate
{
  "series_id": "T10YIE",
  "observation_start": "2020-01-01"
}

Labor Market Analysis

Employment Dynamics

// Comprehensive labor market dashboard
const labor_dashboard = {
  // Headline indicators
  unemployment: "UNRATE",
  payrolls: "PAYEMS",
  participation: "CIVPART",

  // Broader measures
  u6_rate: "U6RATE",
  employment_ratio: "EMRATIO",
  part_time_economic: "LNS12032194",

  // Flows
  initial_claims: "ICSA",
  continuing_claims: "CCSA",
  job_openings: "JTSJOL",
  quits: "JTSQUL",

  // Wages
  avg_hourly_earnings: "CES0500000003",
  real_earnings: "CES0500000030",
  unit_labor_costs: "ULCNFB"
};

Sectoral Employment

Track employment by industry:

Manufacturing

{ "series_id": "MANEMP" }

Construction

{ "series_id": "USCONS" }

Retail Trade

{ "series_id": "USTRADE" }

Healthcare

{ "series_id": "CES6500000001" }

Professional Services

{ "series_id": "USPBS" }

Leisure & Hospitality

{ "series_id": "CES7000000001" }

Financial Conditions

Interest Rate Analysis

// Yield curve
const yield_curve = {
  one_month: "DGS1MO",
  three_month: "DGS3MO",
  six_month: "DGS6MO",
  one_year: "DGS1",
  two_year: "DGS2",
  five_year: "DGS5",
  ten_year: "DGS10",
  thirty_year: "DGS30"
};

// Spreads
const spreads = {
  ten_two: "T10Y2Y",
  ten_three_month: "T10Y3M",
  bbb_treasury: "BAMLC0A4CBBB"
};

Financial Stress Indicators

// St. Louis Fed Financial Stress Index
{
  "series_id": "STLFSI2",
  "observation_start": "2020-01-01"
}

// TED Spread
{
  "series_id": "TEDRATE",
  "observation_start": "2020-01-01"
}

// VIX (market volatility)
{
  "series_id": "VIXCLS",
  "observation_start": "2020-01-01"
}

Sectoral Analysis

Housing Market

const housing_metrics = {
  // Supply
  starts: "HOUST",
  permits: "PERMIT",
  under_construction: "UNDCONTSA",

  // Demand
  existing_sales: "EXHOSLUSM495S",
  new_sales: "HSN1F",

  // Prices
  case_shiller: "CSUSHPISA",
  fhfa_index: "USSTHPI",
  median_price: "MSPUS",

  // Affordability
  mortgage_rate: "MORTGAGE30US",
  affordability_index: "FIXHAI"
};

Manufacturing Sector

// Production
{
  "series_id": "IPMAN",
  "observation_start": "2020-01-01",
  "units": "pc1"
}

// Orders
{
  "series_id": "AMTMNO",
  "observation_start": "2020-01-01"
}

// Capacity utilization
{
  "series_id": "MCU",
  "observation_start": "2020-01-01"
}

// PMI
{
  "series_id": "MANEMP",
  "observation_start": "2020-01-01"
}

Regional Analysis

State Comparisons

// Compare unemployment across states
const states = ["CA", "TX", "NY", "FL", "IL"];

states.forEach(state => {
  fred_get_series({
    series_id: `${state}UR`,
    observation_start: "2020-01-01"
  });
});

// State GDP
states.forEach(state => {
  fred_get_series({
    series_id: `${state}NGSP`,
    observation_start: "2020-Q1"
  });
});

Metro Area Analysis

// Major metro unemployment rates
const metros = {
  nyc: "LAUMT364190",
  la: "LAUMT064910",
  chicago: "LAUMT121410",
  dallas: "LAUMT481910",
  houston: "LAUMT482610"
};

Recession Analysis

NBER Dating

// Official recession indicator
{
  "series_id": "USREC",
  "observation_start": "2000-01-01"
}

// Sahm Rule Recession Indicator
{
  "series_id": "SAHMREALTIME",
  "observation_start": "2000-01-01"
}

Recession Depth and Duration

1

Identify Peak

Find pre-recession highs in key indicators
2

Track Trough

Identify lowest points during recession
3

Measure Recovery

Calculate time to return to pre-recession levels
4

Compare Recessions

Analyze differences in depth, duration, and recovery shape

International Comparisons

Global Indicators

// OECD data
const global = {
  // Composite leading indicators
  us_cli: "USALOLITONOSTSAM",
  oecd_cli: "USALOLITONOSTSAM",

  // GDP
  g7_gdp: "NAEXKP01",
  china_gdp: "CHNNGDP",
  eu_gdp: "CLVMNACSCAB1GQEU272020",

  // Trade
  global_trade: "WLDXTIMVA"
};

Best Practices

Don’t rely on single metrics. Cross-validate with complementary series.
Economic data undergoes revisions. Use vintage data for historical analysis.
Use SA data for trends, NSA for actual seasonal patterns.
Account for reporting lags and indicator relationships.
Record transformation choices and analysis assumptions.

Analysis Workflow

1

Define Question

Clearly state what you’re analyzing
2

Identify Indicators

Select relevant series for your analysis
3

Gather Data

Retrieve series with appropriate transformations
4

Analyze Trends

Look for patterns, correlations, and anomalies
5

Validate Findings

Cross-check with alternative indicators
6

Document Results

Record methodology and conclusions

Next Steps